了解UWB
UWB的起源可追溯到20世纪初,而“超宽带(Ultra-Wideband)”这一术语则在1989年由美国政府提出,并在随后的几年里投入资金进行技术开发。最初,UWB仅限于军事用途,直到21世纪初才开始商业化。近二十年后,随着内置UWB U1芯片的苹果iPhone 11手机发布,UWB技术迎来大规模市场应用,如今它已嵌入智能手机、汽车和众多物联网设备中。
不同于其它技术,UWB专门设计用于实现精准、安全、实时的位置、距离和方向测量位移监测、山体滑坡防灾减灾。正如其名,UWB采用极短的约2纳秒脉冲,在宽达500MHz的信道带宽上传输数据。工作在3.1-10.6GHz的频率范围内,它能够在远距离内以厘米级精度追踪目标。UWB通过飞行时间(ToF)计算距离,来获得如此级别的精度;其中ToF是指UWB脉冲在两个设备(如锚点和标签)间往返所需的时间。
相较于幅度或频率调制载波信号,脉冲信号的采用让UWB系统能够更快地初始化链路并以较少的重复次数发送数据。如图2所示,左侧的UWB信号比右侧窄带信号具有显著更快的上升和下降时间,从而能够精确测量信号的到达时间,增强了对多径效应和其它无线电干扰的抗干扰能力。通过在宽频带上分散能量,并以-41.3dBm的极低功率水平进行传输,UWB对于像低功耗蓝牙这样的窄带无线电信号而言,就如同宽带噪声。
UWB可以采用多种不同的拓扑结构来实现,包括双向测距(TWR)、到达时间差(TDoA)和到达相位差(PDoA),从而在功耗、部署规模和成本方面带来灵活性与权衡。因此,测距可以在两台设备之间、多台(数千台)设备之间,或者在没有任何固定锚点基础设施的情况下进行。
UWB信号传输极为安全,任何试图拦截和放大信号(如中继攻击)的行为都难以成功;使得UWB在信号空间中具有低检测概率、难以截获以及抗干扰的信号特性,让它成为下图中众多位置服务应用的理想选择。
人们越来越认识到,UWB技术作为一种多功能解决方案,价值不仅仅局限于测距,还具备固有的雷达功能——其可用作短距雷达系统,用于存在检测、手势识别甚至生命体征监测。这是通过在一个或多个接收天线上同时发射UWB雷达帧并接收信道脉冲响应(CIR)来实现的;随后,雷达算法通过分析CIR来感知数米外的运动、存在或手势。